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1. Introduction
DCPS is a connectionist production system interpreter that uses distributed representations. As a

connectionist model (Feldman & Ballard, 1982), it consists of many simple, richly interconnected

neuron-like computing units that cooperate to solve problems in parallel. One motivation for

constructing DCPS was to demonstrate that distributed connectionist models are capable of

representing and using explicit rules. Earlier connectionist models (Rumelhart & McClelland, 1986)

have shown that many phenomena which appear to require explicit rules can be handled by using

connection strengths that implicitly capture the regularities of the task domain without ever making

these regularities explicit. However, we do not believe that this removes the need for a more explicit

representation of rules in tasks that more closely resemble serial, deliberate reasoning.

The natural way to implement explicit rules is to apply a parallel best-fit search to the task of finding

the rule whose left-hand side best matches the current contents of working memory. Connectionist

networks are good at performing pattern-matching, especially when there is no perfect match and the

aim is to find the best partial match. One difficulty with this approach is that the kind of matching

required to implement a production system is more complex than simple template matching. The

left-hand side of a production may contain several instances of the same variable, and matches are

only valid if all instances of the variable receive the same binding. Ensuring consistent variable

bindings in a parallel network is a difficult and important problem (Barnden, 1984) and one of the

main aims of this paper is to demonstrate a feasible solution.

Ballard and Hayes have demonstrated that a rather elaborate connectionist network can decide

whether two expressions can be unified (Ballard & Hayes, 1984; Ballard, 1986). DCPS uses a different

solution which is based on earlier work (Hinton, 1981 a) on viewpoint-invariant shape-recognition. In

matching an object-model to a retinal image, it is essential to ensure that all the matches of a piece of

the model to a piece of the image assume the same viewpoint. In matching the LHS of a rule to the

contents of working memory, it is essential to ensure that all the matches of a clause in the LHS to a

fact in working memory assume the same variable bindings.

A second motivation for DCPS is to'shoW how "coarse-coding" or "distributed representations"

can be used to construct a working memory that requires far fewer units than the number of different

facts that can potentially be stored. The price of this economy is that only a small fraction of the

potential facts can actually be present in working memory at any one time. Earlier analyses of

coarse-coding have shown that it is efficient (Hinton, 1981b; Hinton et al., 1986) but they have failed

to demonstrate that it can be used effectively when many different groups of units must interact

correctly. Coarse-coding "smears" the representation of a given item across many units, and when -,
..

coarse-coded representations in several different groups of units interact during an iterative best-fit

%=
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2

search, there is a danger that the representation will become progressively more smeared with each

iteration.

The simulation we present is intended as a detailed demonstration of the feasibility of certain ideas

and should not be viewed as a full implementation of production systems. The production rules our

model interprets are much simpler than those found in OPS5 or EMYCIN. Nevertheless, they do

contain variables that get bound consistently by the connectionist network, and they are implemented

using distributed representations throughout. This falsifies any strong claim that connectionist

systems using distributed representations could not possibly implement symbol processing.

However, it leaves us open to the alternative criticism that we have merely implemented a very simple

production system in a peculiarly inefficient way.

One advantage of the implementation we present is that it is robust against the destruction of any

small random subset of the units or connections, but the real advantage (which we have not

demonstrated in this simulation) comes from the ability of a connectionist network to do a rapid

best-fit match. This is potentially much more powerful than the standard implementations which find

all exact matches and then do conflict resolution. In situations where no existing rule fits perfectly, it

may be sensible to apply a plausible rule, particularly in a learning system that needs to explore the

space of plausible actions in order to find a satisfactory one. The ability of a connectionist

implementation to settle on plausible but imperfect matches could therefore be very helpful, but only if

the matching apparatus is able to do more than simple, variable-free "template" matches. Our

eventual aim is to exploit the best-fit ability of DCPS to allow it to do more of the computation in each

match so that it can perform complex tasks with fewer rule-firings, and rules in one domain can be

created by analogy with rules in other domains. But before we can do this we must demonstrate that

it is possible to build a workable system that uses distributed representations and enforces consistent

variable bindings during a match. So our current model only has a few of the interesting emergent

properties that we eventually hope to demonstrate: it is damage resistant, and the capacity of its

working memory is dependent on the similarity of the items being stored.

2. The Structure of Working Memory
The working memory elements of DCPS are triples of symbols, such as (F A B), We have chosen

an alphabet size of 25 symbols, giving 253 or 15,625 possible triples. Only a few of these are present

in working memory at any one time; typically there will be half a dozen. The sparseness of working

memory is an important consideration in the design of the model.

The most straightforward representation for a set of triples, in a conventional architecture, would be

a purely "localist" one, where every triple was represented by a dedicated unit. A unit in the active

,,•%
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state would then indicate that the correspondi.,g triple was present. We have rejected this idea in "

favor of a distributed or "coarse-coded" representation (Hinton, 1981b; Hinton et al., 1986). Localist
representations require too many units and too many connections; they quickly succumb to

combinatorial explosion as the alphabet size or the length of a sequence increases. This is because

localist representations do not make efficient use of the units when the number of items that are

simultaneously present in working memory is much less than the number of possible items.

Distributed representations use the information-bearing capacity of the units more efficiently by

making them active much more often.1 In addition to the inefficiency of localist representations we

think that a one-to-one mapping between individual neurons and symbolic structures is

physiologically implausible; it is reminiscent of the grandmother cell idea. Recordings in the temporal

lobe of the macaque cortex support the idea that neurons are tuned to very complex entities such as

a face (Rolls, 1984) but they do not support the idea that a particular face is encoded by just one or

just a few neurons. Each particular face is almost certainly encoded as a pattern of activity

distributed over quite a large number of units, each of which responds to a subset of the possible

faces. Using a distributed representation not only makes our model more efficient and neurally
plausible, it also makes it tolerant of noise and occasional malfunctions.

2.1. Receptive Fields

The working memory space of DCPS, shown in figure 1, consists of 2000 binary state units. Each

unit has a receptive field table such as the one in figure 2. A unit's receptive field is defined to be the

crossproduct of the six symbols in each of the three columns, giving 63 or 216 triples per field. The

unit described in figure 2 has the triples (C K R) and ( F A B) in its receptive field, along with 214

others. Receptive field tables are generated randomly prior to beginning the simulation; they

determine the connection pattern between units in the various spaces comprising DCPS. Once the
connections have been built and the working memory units' states have been initialized, the tables

are no longer needed; they are not consulted when running the model.

* A triple may be stored in working memory by turning on all its receptors. With 2000 working memory

units, triples will average 63 /25 3x2000 or roughly 28 receptors. The number varies slightly from one

triple to the next due to the random distribution of receptive fields. An external observer can test

whether a particular triple is present in working memory by checking the percentage of active

receptors for it. If this is close to 100%, the triple may be assumed to be present. For example, if the

If there are 15,625 possible items, but only 6 of these are present at any one time, the probability that a working memory unit

is active in a localist scheme is only about 0.0004. The average information conveyed by the unit is therefore the entropy of the

distribution {0.0004, 0.9996) which is about 0.005 bits. In DCPS, fewer units are used to encode the same information, and
each unit is active much more often so it conveys much more information. The probability of an individual unit being active is
about 0.08 and so the average information it conveys is about 0.4 bits. However, in DCPS the correlation between units cannot
be ignored (as it can in the previous case) and so the average information conveyed per unit is actually only about 0.04 bits.

% %
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Figure 1: Block diagram of DCPS, a Distributed Connectionist Production System.

triple (F A A) were stored in working memory, the unit described in figure 2 would be active, along

with about 27 ,ther units. Although (C K R) also falls within the receptive field of this unit, the

number of receptors two unrelated triples have in common is small; on average, it is less than one.

Thus, while 100% of the (F A B) units become active when ( F A B) is stored, only 1 out of roughly

28 (C K R) units would become active. To the external observer, (F A B) clearly is present in

working memory and (C K R) clearly is not. But the network itself doesn't need to compute these

percentages. It relies on the fact that triples that are present have strong effects and triples that are

absent do not.

C A B .

F E D A

M H J

0 K M

S T P

W y R ',

Figure 2: An example of a randomly generated receptive field table for a working memory
unit. The receptive field of the unit is defined as the crossproduct of the symbols
in the three columns.
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Figure 3 shows the state of working memory when the two triples ( F A B) and ( F C D) have been

stored. The 2000 working memory units are arranged in a 40x50 array, with the 55 that are active

indicated by black squares. The positions of these 55 units in the array are not significant, since

units' receptive fields are generated randomly. However, if we were to examine the receptive fields of

each of the active units we would see that every one contains either (F A B) or (F C D), or both.

• N

== U

• I%

a Sam

.Working Memory State

Figure 3: The state of working memory after the triples (F A B) and (F C D) have been
stored. Active working memory units are indicated by black squares. 55 of the
2000 units are active.

Table 1 shows the first dozen triples with the strongest representations when working memory is in

the state shown in figure 3. ( F A B) and ( F C D) each have 100% of their receptors active, while

the next best represented triple, ( F N B), has only 42% active. The average activity level over all N
15,625 triples is much lower: only 2.7%. If we adopt the criterion that 75% of a triple's receptors must

be active for it to be deemed present in memory, the division between present and absent triples in

Table I is quite clear.

Figure 4 shows the levels of support for all 15,625 possible triples when working memory contains

(F A 8) and ( F C; D). In the figure, (A A A ) is located in the upper left corner and (Y Y Y) in the

lower right. The blobs in this figure are associated with triples, not units; the size of each bloble

indicates how many receptors are active for that triple. A simple thresholding operation yields figure

5, in which the (F A B) and (F C D) blobs stand out clearly and there is only a small amount of

noise remaining.

U%

% %.-_
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Percent Active Total
Triple Active Receptors Receptors

(F A B 100% 28 /2

(F AD) 100% 28 /28

(F AD) 40% 11 /27
(F 8D) 38% 10 /26
(F A X) 37% 11 /29
(S A B) 37% 10 /27

(F Q D) 37% 10 /27

(F C N) 37% 10 /27
(F C B) 37% 10 /27
(FC M) 35% 10 /28
(F T D) 35% 10 /28
(N CD) 34% 10 /29

Table 1: The first dozen triples with the strongest representations when working memory
is in the state shown in figure 3.

%.

.. All

. . . ..I:.%
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Figu re 5: A thresholded version of figure 4. The (F A B) and (F C D) blobs stand out
clearly here.

2.2. Properties of Coarse Coding -

Coarse coded representations have a number of interesting and useful properties. One of these is

tolerance of noise. If after storing some triples in working memory a few units are flipped on or off at

random, the perceived contents of working memory will not be affected at all.2 Tolerance of noise is

especially important when items will be deleted from the memory as well as added to it. A slight

overlap in the receptor set of related triples causes deletion of a triple to affect any related ones 6

previously stored. That is, if ( F A B) and (F C D) were stored in memory and ( F C D) were then

deleted by turning off all its receptors, it is likely that only 27 of the 28 (F A B) receptors would

remain active, the 28th having been shared between the two.

The contents of working memory remain reasonably persistent because the overlap between any

two triples is small. A visual effect resulting from this overlap can be seen in figure 4. The dot pattern

may appear completely random at first, but closer examination will reveal a regular series of thin

2 Assuming, of course, that we do not require strictly 100% of a triple's receptors to be active for it to be considered present.

%55 V~ %5 %% %
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horizontal and vertical bands. These bands are formed by triples that have 2 out of 3 components in

common with the stored triples (F A B) and (F C D); on average such triples have 7 of their

receptors active, while triples with no components in common, such as (G K Q), average about 0.4

receptors active. Another effect that can be seen in the figure is the horizontal F band that is thicker

and also somewhat darker than the other bands. Since both of the stored triples begin with F, all

other triples beginning with F have a slightly higher number of active receptors.

Another interesting property of the coarse coded representation is that the memory has no fixed

capacity; instead its ability to distinguish stored items from other items decreases gradually as the

number of stored items increases. Each triple added to working memory raises the number of active

units, thereby increasing the support for other triples that have not been stored. As working memory

fills up, the fraction of active receptors for certain triples that are "close" to those that have been

stored approaches 100%, and the dividing line between present and absent triples blurs. If many

closely related triples are stored, such as (F A A), (F A B), (F A C), (F A D), etc., then the

system may exhibit local blurring, where it can't tell whether (F A P) is present or not but it is

certain that (G S Q) is absent. Figure 6 illustrates the local blurring that occurs when four closely
related triples are stored.

Finally, triples stored early on in a coarse coded memory eventually fade away if production rules

delete a large number of other triples. This gradual decay phenomenon is again an effect of the

overlap of receptive fields. One way to counteract the decay effect is to recall a triple before it has

completely faded away, and then store it again. Whenever a triple is stored all its receptors become

active, so its representation in working memory is refreshed.

3. Selective Attention: Clause Spaces
Clause spaces, labeled C1 and C2 in figure 1, are a device for focusing the network's attention on

particular triples from the set stored in working memory. Michael Mozer of UCSD independently

invented a device similar to clause spaces, which he calls "pullout networks," that allow a perceptual

system to attend to specific objects in a scene (Mozer, 1984). The matching problem in DCPS

consists of selecting two triples in working memory (which may contain half a dozen or more) that

together satisfy the left hand side of some production rule. Each clause space is responsible for

pulling out one of these triples.

There is a one-one excitatory mapping between working memory units and units in C1 and C2

spaces, so that each working memory unit that is active tries to turn on its corresponding C1 and C2

units. What prevents the C1 and C2 spaces from exactly copying the activity pattern in working

memory is the fact that clause units are mutually inhibitory within their space, i.e., each of the 2000 C1

•% %r%.% . % % % % % % % % % 5 "
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Figu re 6: An illustration of the local blurring that occurs when several related triples are '
stored. Here,(F A A),(F A B),(F A C),and(F A D )have been stored. '
As a result, similar triples receive a high degree of support, as shown by the "-
dark (F A x) line at the beginning of the F band and the weaker (x A y) lines in :other bands.

units inhibits the other 1999 units, and similarly for C2; working memory units do not inhibit each
other. See figure 7. The" inhibition level in clause space is carefully adjusted so that only about 28,,
units per space can remain active simultaneously, i.e., just enough to represent a single coarse coded V.

triple. Exactly which triple is selected depends on various outside influences imposed on the clause

space by units in the Rule and Bind spaces. Briefly, a clause unit will be able to remain active despite
inhibition from its siblings only if it receives support from rule and bind units that are also active.

The apparent requirement that a clause space have (N2 -N)/2 bidirectional inhibitory connections
might seem a flaw in the design, since as the number of units grows the number of connections
quickly becomes unreasonable. With 2000 clause units there would have to be 1,999,000
connections. But these connections need not actually be built. The inhibition function can be
accomplished more economically by 2N unidirectional connections: N excitatory connections from
clause units to a special regulatory unit with a graded or integer-valued rather than binary response,3

3 These regulatory units resemble inhibitory inter-neurons which probably play a similar role in cortex.
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plus N inhibitory connections in the opposite direction. To exactly mimic the effect of N(N -1) pairwise

connections we would also need one.excitatory connection from each unit to itself to cancel out the

inhibitory effect it has on itself via the regulatory unit, giving 3N total connections. However, in

practice these recurrent connections may be omitted with negligible effect.

For analysis purposes we will treat DCPS as an instance of a Hopfield network, and later, a

Boltzmann machine. In order to to meet those definitions we will ignore the regulatory unit solution

and adopt the pretense, for the remainder of this article, that (N2 -N)/2 bidirectional inhibitory

connections are actually built where required.

Note that although clause spaces are constrained to have roughly 28 units active at a time, not all

patterns of 28 active units correspond to a valid triple. Clause spaces can sometimes be in an

intermediate state where there are, say, 15 receptors for ( F A B) active, 10 for (G K Q), and 5 for -,

something else. In other words, the clause-space units can divide their attention among several

partially represented triples simultaneously. At higher temperatures (more relaxed constraints), more

than 28 units can be active, which increases the chance that multiple triples will be partially

represented. There is nothing analogous to this in conventional computers, where symbol structures

remain discrete and must be considered one at a time (Derthick & Plaut, 1986).

4. The Rules

4.1. Rule Format

Production rules in DCPS consist of two left hand side clauses that specify triples and any number

of right hand side actions that modify working memory by adding or deleting triples. We first consider

rules without variables. A typical rule would be:

Rule-i: (F A B) (F C D) -- > +(G A B) +(P D Q) -(F C D)

This rule can fire if ( F A B ) and ( F C D) are both present in working memory. If it does fire, the

triples (G A B) and (P D Q) will be added to memory and (F C D) will be deleted.

4.2. Representation of Rules

Each rule is represented by a population of 40 Rule units; the pattern of connections between these

units and the clause units is determined by the left hand side of the rule. For example, Rule units that

represent Rule-1 above will have bidirectional excitatory connections to C1 units whose receptive

field includes ( F A B) and C2 units whose receptive field includes ( F C D), as shown in figure 7. If

a sufficiently large number of these C1 and C2 units become active, indicating that the triples

(F A B) and (F C D) are present in working memory, the rule unit will also become active.

P 1, .- - .- ,--.-
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Conversely, since the connections are bidirectional, when a Rule-1 unit becomes active it provides :.

support for units in C1 and C2 space that support that rule.

The 40 units representing one production rule are connected so as to form a clique. Each active .,

unit provides a slight excitatory stimulus to the other units in its clique and a slight inhibitory stimulus
"I.

to units in all the other cliques. Thus, Rule space is organized as a "winner take all" network

(Feldman and Ballard, 1982); when the network settles, all the units in one clique will be active and all
the remaining units will be inactive. This is how the system decides which rule to fire.

,.
There are several reasons for implementing rules as collections of units rather than as individual

units. First, it is damage resistant. Second, it allows binary units to give a graded response.4 If,

during the settling phase, there is a weak match between one rule and working memory, this will be

indicated by only some of the corresponding rule units being active. If another rule matches more

strongly, more of th. units in its clique will be active, and they will eventually overpower the units in

the other cliques. The implementation of rules in DCPS is "semi-distributed:" rules are represented

by the collective activity of a set of units, but each unit codes for only one rule. -,

A further reason for implementing rules with multiple units is that it frees any one unit from having to

represent the entire pattern associated with a rule's left hand side. Each rule unit is connected to a
random subset of all the clause units associated with the rule's left hand side; only the clique as a

whole has a complete representation for the rule. This is a more plausible organization than one in
which rules are represented by single units, since it allows us to limit the connectivity of rule units *5

without limiting the complexity of rules.

As in the case of clause spaces, the problem of building O(N2) connections among rule units can be

solved by the use of regulatory cells with graded outputs and a combination of one-way and ,e

bidirectional connections, as shown in figure 9. Each rule unit excites its clique's "pro" regulatory

unit which in turn excites all its siblings in the clique; the unit also receives inhibition from its clique's
"con" regulatory unit. The regulatory units of the various cliques are in turn connected to a master %

regulatory unit that controls the entire rule space. Each clique's pro unit also has an inhibitory

connection to the corresponding con unit, to counterbalance the tendency for a clique to inhibit itself
via the master regulatory unit. As in figure 8, the recurrent connections from rule units to themselves,

which are needed for absolute equivalence to the original network, have been omitted.

4 One could implement rules as individual units with continuous rather than binary outputs, but the resulting network would
not be a Hopfield net or Boltzmann machine The fact that our hypothesized regulatory units have graded (either continuous or -
integer-valued) activation levels can be ignore because those units are merely used to simulate an equivalent Hopfield net
composed solely of binary state units, with O(N ) rather than O(N) connections.

% % % .. -. % .... . ...
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5. Variable Binding

5.1. Constraints on Rules r

The first version of DCPS, called DCPS1, did not allow rules to contain variables. In developing
DCPS2, which allows a limited form of variable binding, there were three distinct binding problems to

consider:

1. Left hand sides in which variables impose intra-clause constraints, e.g., the clause
(=x R =x ) can only match triplessuch as ( F R F) or (G R G). '

2. Left hand sides in which variables impose inter-clause constraints. The pair of clauses
(=x A B) and (=x C D) can match pairs of triples such as (F A B) and (F C D) or
(G A B) and (G C D),butnot (F A B) and (G C 0).

3. Right hand side actions in which variables appear. Variable binding requires a memory
so that the variable's value can be instantiated into right hand side actions when the rule
fires.

Each of these problems requires a different type of wiring pattern. Intra-clause constraints are the

least interesting, and so they were not included. DCPS2 does allow a limited form of inter-clause

constraint: each rule must have a variable in the first position of both left hand side clauses.5 DCPS2

also permits unrestricted use of variables on the right hand side. A typical DCPS2 rule is:

Rule-2: (=x A B) (=x C D) -- > +(G =x P) -(=x R =x) -

If this rule fires by matching (F A B) and (F C D), so that = x is bound to F, its right hand side will

add(G F P) to working memory and delete (F R F).

5.2. The Structure of Bind Space

Variable binding, which refers both to the imposition of constraints on rule matching and the

instantiation of bound variables, is handled by the fifth space of units in figure 1, the Bind space.6 The

units in this space form a winner take all network with 25 cliques, one for each of the 25 symbols of

the alphabet. The space is coarse coded, so that each unit belongs to three cliques (votes for three

distinct symbols) rather than one. Since Bind space contains a total of 333 units, each symbol falls in

the receptive field of (3/25)x333 or 40 bind units, except for Y which has only 39.

Each bind unit has a set of bidirectional excitatory connections to units in Cl and C2 space whose

receptive field table contains one or more of the letters the bind unit votes for. An F/J/W bind unit,

5This choice was arbitrary; we could have chosen to require that the variable appear, say, in the first position of clause 1 and
the third position of clause 2. The important constraint is that the variable be in the same position in all rules.

6These bind units are similar to the mapping units used for object recognition by Hinton (1981a).

A
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for example, connects to a randomly chosen set of 240 Cl units: 80 that are receptors for triples

beginning with F, 80 for J, and 80 for W. The same bind unit would also connect to a similar but

independently chosen set of 240 C2 units. If a Cl unit that is a receptor for (F A B) and is

connected to this bind unit becomes active, it will excite the bind unit, which in turn will excite other

Cl and C2 units that code for triples beginning with F, J, or W. With many units in the F bind clique

active, C2 space is more likely to adopt an activity pattern representing a triple beginning with F. The

global effect of bind space is that it forces the Cl and C2 spaces to select triples beginning with the

same symbol; that is how the "variable binding constraint" is imposed.
-,'.

The inhibitory connections between cliques in bind space prevent the number of active bind units

from growing much above 40, which is just enough to activate all the units that vote for a particular

symbol as the value of the bound variable. The stable states of this network (considered in isolation)

each consist of one active clique of 40 units, with the remaining units inactive. But because each unit l.

is a member of three cliques, in a stable state the winning symbol receives 40 votes whereas the 24 .-

remaining symbols receive 3 to 4 votes each.7 Even when Bind space has settled on a value for the

variable, it is still giving some slight consideration to other values. This consequence of the coarse

coded representation may help the network avoid getting trapped in local minima when searching for

a globally optimal rule match, though this issue needs further research.

6. The Match Process
So far we have described a network consisting of five spaces of units: working memory, Cl, C2,

rule, and bind. Working memory units are essentially latches; they do not perform computation, but

their activity pattern drives the rule match process. Cl, C2, rule, and bind units are wired up in

complex but principled ways. Ignoring the possible use of regulatory units, all units have binary

states, and all connections between units are bidirectionally symmetric. The important questions to

ask at this point are: .=.p

1. What are the stable states of such networks? &

=

2. Under what conditions will a network eventually settle into one of its stable states?

3. Do stable states bear any relation to valid rule matches?

The first two questions have already been answered by Hopfield (1982); we will try to present a

77
convincing argument for the third."..-

7 Each symbol is voted for by 40 units, and each unit votes for 3 symbols, so in a stable state there are 120 votes to be had.
Since 40 go to the winner, the losers average (120.40)/(25-1) = 3.333 votes apiece. .. 4.

%
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6.1. Hopfield Networks

A Hopfield network is a neural network composed of binary threshold units, all of whose I

connections are symmetric. Hopfield proved that if units chanie state asynchronously and there are

no transmission delays across connections, the network's stable states are those states a that

minimize a certain energy measure E(a). Let wii denote the weight of the connection between the ith

and jth units; let di denote the threshold of the ith unit; and let si denote the state (0 or 1) of the ith

unit when the network as a whole is in state a. Then the energy of a state is the sum of the active

units' thresholds minus the sum of the weights of connections between pairs of active units:
'-

E(a) = i - Si S Wii

This energy measure derives from an analogy Hopfield draws with spin glasses in physics, which

operate under the same sorts of constraints as the neural networks he was studying. The stable *..

states of these networks are called local energy minima because energy cannot be lowered any a,

further by an individual unit's flipping state. Hopfield showed that networks that meet his constraints

will settle into an energy minimum from any starting state because eacl state change either leaves

the energy unchanged or reduces it; thus the energy decreases monotonically as the network moves

from its initial state to a stable state. In general, however, the particular minimum energy state the

network will end up in cannot be predicted from the starting state, and there is no guarantee that it will

be a global minimum 8 rather than a local one.

6.2. Matching as Parallel Constraint Satisfaction

The argument that a valid rule match corresponds to a minimum energy state, in fact, to a global

energy minimum, is based on reformulating the match as a constraint satisfaction problem. Weighted

connections between units cause them to impose constraints on each other and the energy of a state

is a measure of how much it violates the constraints. So a minimum energy state is one in which as

many constraints are satisfied as possible. The following sorts of constraints are present:

" Due to their high thresholds, clause units cannot become active unless their
corresponding working memory units are active.

" Due to mutual inhibition, only about 28 clause units can be active simultaneously in each
space, which is just enough to represent one triple.

" Rule and bind units influence the clause units. A triple can remain active in C1 or C2
space only if it is supported by a population of rule and bind units, i.e., it must match
some rule's left hand side and contain the symbol voted for by the active bind clique in its
first position.

8 A global minimum is a state whose energy is less than or equal to the energy of all other states the network could be in.

%I
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* Active clause units excite the rule and the bind units with which they are compatible. For
example, C1 units whose receptive field includes (F A B) will try to turn on any rule
units whose first clause is ( x A B ), and any bind units that support the variable value
F.

* Rule space is organized as a winner take all network. Rule units excite others that vote
for the same rule and inhibit those that vote for different rules.

* Bind units form a coarse coded winner take all network. They excite other units that vote "-
for the same symbol (or symbols, if they have more than one in common), and inhibit units
that vote for different symbols.

Considered individually, the C1, C2, rule, and bind spaces have many equivalent stable states. For

instance, if bind space wasn't connected to clause spaces that are influenced by working memory, its

25 stable states would be completely equivalent. Rule space has as many stable states as there are

rules; if rule space wasn't connected to the clause spaces then its stable states would also be

equivalent. But considered together, the various spaces interact with each other so that the only way

all their constraints can be satisfied - thus putting the network into a global energy minimum - is for

the C1 and C2 spaces to settle into representations of triples that are in fact present in working

memory and match one of the rules, while rule space settles into a state where that particular rule is

the winner, and bind space settles into a state where the active symbol is the one that appears in the

first position of both the triples in C1 and C2 spaces.

Constraint satisfaction in a Hopfield net is not a foolproof match technique because it is possible for

the network to get stuck in a local energy minimum that does not represent a valid match. This

occurs when a winner-take-all space, either rule or bind, settles so deeply into an undesirable stable

state (all the units of one incorrect clique on, the remaining units off) that the other spaces cannot

dislodge it.

In practice, the Hopfield net version of DCPS had no trouble finding the global energy minimum

when the answer to the match problem was clear. However, in more difficult cases where there were

many elements in working memory, many similar rules, or many partial matches possible but only one

correct one, the network would often get stuck in a local minimum. In order to improve the chances

of settling into the global minimum, DCPS was converted to a Boltzmann machine.

6.3. Boltzmann Machines

A Boltzmann machine (Fahlman, Hinton & Sejnowski, 1983; Ackley, Hinton & Sejnowski, 1985) is a

Hopfield network whose units behave stochastically as a function of their energy gap. A unit's energy

gap is the amount by which its activation exceeds its threshold. The energy gap of the ith unit when

the network as a whole is in state a, written AE(a), is defined as:
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While the deterministic units of a Hopfield network turn on whenever their energy gap is positive,
i.e., whenever their input exceeds their threshold, in a Boltzmann machine a unit's energy gap

determines only the probability that it will turn on, in accordance with the Boltzmann distribution. Let

pi(a) denote the probability that the ith unit is on when the network as a whole is in state a. This

probability is given by the formula

I
pi((a) =

1 + e-Ei(E )/T

The parameter T in the above equation is called the temperature. At very high temperatures units
behave almost randomly, i.e., the probability that a unit will turn on is approximately 0.5. (It is slightly
above 0.5 for units with large positive energy gaps, slightly below 0.5 for units with large negative

energy gaps.) On the other hand, when the temperature is close to zero the behavior of the units is
almost deterministic, i.e., the Boltzmann machine acts like a Hopfield net (see figure 10). At moderate
temperatures units tend to turn on when their energy gaps are positive, but they have a small
probability of turning on even if their energy gap is negative, and a small probability of turning off

even if their energy gap is positive. So at moderate temperatures a Boltzmann machine will
occasionally move uphill in energy space, although the trend is still to move downhill. The higher the

temperature the more likely an uphill move will be made.

0. T= 10

T=32

-100 -50 0 50 10 0

Figure 10: Graph of the Boltzmann equation for three different temperature values. This
sigmoid curve shows the probability p, that unit i will be active as a function of
its energy gap AEr

If a Boltzmann machine starts out at high temperature and is very gradually cooled to a temperature

%.-...-...
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close to zero, it is likely to end up in a state that is a global energy minimum. The probability that this
will happen can be brought arbitrarily close to 1.0 by lowering the temperature sufficiently slowly "'7.
(Geman & Geman, 1984). This stochastic search technique, which is known as simulated annealing
(Kirkpatrick et al., 1983), has been applied with good results to optimization problems unconnected

with neural networks, and has also been applied to a variety of problems in low level vision

(Marroquin, 1985). -

6.4. Matching by Simulated Annealing

The ability to move uphill in energy space allows the Boltzmann version of DCPS to escape local

energy minima as it searches for the global minimum. In practice, we have not had to use a genuine
annealing search in order to get acceptable performance from the network. When we ran the network

at zero temperature, it got trapped in poor local minima, but we discovered that this could be avoided 1.%

by running at three distinct temperatures. Figure 11 shows the temperature schedule used in the

current version of the model.

1. Initialize: turn off all rule, bind, and clause units.

2. Randomize: run for 2 cycles at temperature 300. This temperature is high enough to
ensure that all units which have any chance of being part of the solution have a
reasonable chance of turning on, but it is low enough that completely irrelevant units are
unlikely to be on.

3. Match: run for up to 10 cycles at temperature 32; stop if the energy is negative after any
cycle.

4. Cleanup: run for 4 cycles at a temperature which is effectively zero. (We actually used
0.1 to avoid dividing by zero.)

5. Rebias: raise the threshold of all clause, rule, and bind units by 50. -

6. Verify: run for 5 cycles at temperature of effectively zero.

Figure 11 : The temperature schedule used in the Boltzmann machine version of DCPS.

The network is initialized for matching by turning off all rule, bind, and clause units, leaving it in a

zero energy state. Next its state is "randomized" by running it at a relatively high temperature of 300

for two cycles.9 As figure 10 shows, units behave fairly randomly at this temperature, but they are still
more likely to be active if their energy gap is positive than negative. At this temperature we have

9A cycle is N random updates, where N is the number of units in the network. Although the updating of units is done
randomly, on average each unit will get one chance to update its state during each cycle.

%
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observed that the units that support the correct match and units that support partial matches are the
ones that are on most often; units unrelated to a legal match become active less frequently. With so
many units on, the energy of the network becomes quite high; with six rules (240 rule units) it varies

between 8,000 and 12,000. See figure 12.

"" ' J -d %,'

300 132 .I.I

Ener y Trace Window

Figure 12: A graph of the energy level as the network follows the temperature schedule of
figure 11. Thin vertical divisions mark temperature changes, with the new
temperature shown at the bottom of the graph. A thick division marks the point
where thresholds are raised in the rebiasing step.

The real matching work is performed in the next step of the schedule, at a temperature of 32. The
precipitous drop in temperature from 300 to 32 is more suggestive of quench 'g than annealing but
has no adverse effect on the match. The continued activity of rule, bind, and clause units now

depends more strongly on support received from other units, but the network retains enough
flexibility at this moderate temperature to explore various match possibilities rather than sink into the
nearest local minimum. Cliques for a particular rule in rule space or symbol in bind space may

become very active, fade away, and become active again. Triples may materialize in the clause
spaces, be partially replaced by other triples, and then perhaps return. The energy of the network
rises and falls, but the general trend is decreasing. Once the energy falls below zero the system is

deep enough into a local minimum that it is unlikely to get out, so we move on to the cleanup step of % "
1'

the temperature schedule. In this step the network is run at a very low temperature, 0.1. Only units
with positive energy gaps will remain active at this temperature. The result is that the clause spaces

are left with roughly 28 units on, rule and bind spaces each have one clique active (40 units on), and

the network is indicating as clearly as possible what it thinks the correct match should be. -

lOThls value Is approximate and was determined empirically. %

I'
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m
% % ".'N . " " % % , .' " % % =% % % % " . . .. . . . ". ", ', ,' ¢''• "



22

6.5. Detecting Failed Matches

There are two ways in which the match can fail. The simplest is when the network fails to settle into

any energy minimum at all. In this case very few of the units will have positive energy gaps, so when

the temperature drops to 0.1 they will eventually all turn off. The more difficult case to detect is when"J

the network has settled into a local energy minimum representing a partial match. The energy of a

partial match is moderately negative, typically around -2500. When the temperature drops to zero the,%

network settles to the very bottom of the energy minimum and stays there.

All correct matches have energies below a certain value, which distinguishes them from partial

matches. However, in connectionist models it is better if the behavior of individual units does not

depend on measuring global properties of the network such as energy. To detect failed matches

without measuring energy directly we use a technique called rebiasing. After the network has run for

four cycles at a temperature of 0.1, in the cleanup phase the thresholds of all rule, bind, and clause

units are raised by a value of 50, or equivalently, an inhibitory bias of -50 is applied to each unit. This

has the effect of reshaping the energy landscape as shown schematically1 in figure 13. The correct

match is still a deep energy minimum, but it is much narrower and its absolute energy is now

considerably higher than zero. More importantly, a partial match that was a local minimum before is

now located on a slope that leads down to the zero energy state with all units turned off. After

rebiasing, the network is run for five more cycles at a temperature of 0.1. If units remain active at the

end of this step, the network is indicating a correct match. If a partial match was found, units will

gradually turn off as a result of rebiasing, causing the energy to drop to zero as shown in figure 14.

One might wonder why the thresholds of the rule, bind, and clause units were not originally set at

the higher level, eliminating the need for rebiasing. This would make the energy minima too narrow,

making them more difficult for the search to find. Also, after rebiasing the energy of the correct match

state becomes moderately positive. At high temperatures the network could find a better state simply . .

by turning all its units off. When rebiasing is delayed until a low temperature has been reached, the

network remains trapped in the state (now with positive energy, but still a local minimum) it was in if it

managed to find the correct match.

We have also considered the possibility of more flexible temperature schedules for coping with I
failed matches. After running for 10 cycles in the match phase at a temperature of 32, if the energy is

not low enough for the network to have settled into the global minimum, it is probably in a state N:

indicating a partially valid match. Either rule space has settled onto the right rule but bind space

1 1 The true energy landscape is not continuous, and nor can it be represented by a two-dimensional graph. It is an
assignment of real values to the corners of an N-dimensional boolean hypercibe representing the states of the network, where
N is the number of units.

%* % %
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Figure 13: Effect of rebiasing on the energy landscape. The global energy minimum

becomes a deep but narrower energy minimum. States representing local
energy minima end up on a slope leading down to a zero energy state.
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Figure 14: Detection of a partial match by rebiasing. Energy drops to zero as units turn
off after their thresholds are raised.

picked the wrong symbol, or else the reverse has occurred. To recover, we could run for a few cycles

at a slightly higher temperature, around 40, to kick the network out of its local minimum, and then V

enter the match phase again.

7. Rule Firing
After a rule has matched successfully it must be fired, which means performing its right hand side

actions that update working memory.. The ability of rules to update a persistent symbol structure

whose contents determines the next rule that will match is what enables DCPS to exhibit in.teresting .5

sequential behavior. We first consider the problem of right hand side update actions that are variable-

free, and then move on to the general case where variables may appear in any position of a triple.

7.1. Variable-Free Actions

The right hand sides of rules are implemented in DCPS as globally gated connections from rule

units back to working memory units. The gate is closed during the match process so that rule units %

cannot affect working memory at all. During the rule firing portion of the production system's

recognize-act cycle the gate is opened briefly; at this time, rule units that excite or inhibit working

memory units can cause them to change their state. In the absence of outside stimuli, working

memory units have a built in hysteresis property that causes them to retain their current state. When

the gate is closed prior to the next match cycle, working memory will be frozen in its updated state.

Consider the rule units that implement Rule-I on page 11. This rule adds the triples (G A B) and

(P D Q) to working memory and deletes ( F C D). The units that implement Rule- 1 will have gated

excitatory connections to (G A B) and (P D Q) receptors, and gated inhibitory connections to

(F C D) receptors. The hysteresis levels of working memory units are set so that no one rule unit

can force them to change state; instead, the concerted action of several units is required. This is

another feature of the model that contributes to its tolerance for unreliability in individual

._. . . . .. ./ - A - V .- - .. -- . >-'.: .~"- " % . .. % %-
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components: if a few random rule units fire spontaneously, they will have no effect on working

memory.

Architectures with one-way and/or gated connections admittedly violate the definitions of a

Hopfield network or a Boltzmann machine. DCPS requires these types of connections in order to

produce sequential behavior; without them it would simply settle into an energy minimum and stay

there. Fortunately these special connections only come into play during the rule firing phase of the

recognize-act cycle. In the rule matching phase the network is equivalent to one that is a pure

Hopfield net/Boltzmann machine, because all the functioning coni.ections are bidirectional and there

are no gates opening or closing. The theoretical results of Hopfield and of Hinton and Sejnowski are

therefore applicable to DCPS. 12

7.2. Actions Requiring Instantiated Variable Values

To instantiate variable values into right hand side actions requires a cooperative effort between rule

and bind spaces. Consider the +(G =x P) action in Rule-2 on page 15. The Rule-2 units would

collectively make excitatory connections to all working memory units that are receptors of (G =x P)

for any value of =x. On average there will be 62/25 2 x2000 or roughly 115 such working memory

units. However, these connections are individually gated by bind unit cliques: Connections

(synapses) from rule Units to working memory units are only effective if the connection itself receives

some excitatory stimulation from bind units (see figure 15). This is equivalent to saying that the input

to working memory units is the conjunction of the activity coming from a rule unit and a clique of bind
units.1 3 Thus, if the network has settled into a state where the F clique is the winner in bind space,

only connections from rule units to units that are receptors for (G F P) will be enabled. Each such

connection from Rule space back to working memory must be stimulated by several bind units in

order to be effective; this is necessary because individual bind units vote for three different symbols;

only the collection as a whole votes for a unique symbol. The requirement for support from multiple

bind units also makes the network resistant to noise that could occur during rule firing due to

randomly malfunctioning bind units.

Gated connections are also needed to allow actions to delete items from memory, because bind

units by themselves have no way to tell whether the value they represent is needed for an add action

A similar "equivalent network" argument can be made for the use of regulatory units, even though those cells exert their
influence during the match phase.

13'1 3 The use of gated (or conjunctive) connections may appear to violate the normal ground rules of connectionist modeling. It
is not difficult, however, to find biological structures that exhibit the crucial property of gated connections A local non-linear
interaction between two synapses. Poggio and Torre (1978) have snown that such interactions can be expected to occur in the
dendrites of cortical neurons, and Kandel and Schwartz (1982) have demonstrated the importance, in the sea slug Aplysia, of
presynaptic facilitation, which is a different way of achieving local, non-linear synaptic interactions.

U'.......................
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Rule Units

Bind
Units

Vn;t

Figure 15: Right hand side actions involving variables are gated by excitatory
connections from bind units onto the synapses that rule units make with
working memory units.

or a delete action. In the case of delete actions such as - ( =x R -x), the connections from rule units

to working memory are inhibitory, but the bind units' effects are always excitatory. By using gated

connections, we allow the bind units to select the inhibitory connections that will be allowed to

influence working memory.

7.3. Functions on Variable Values

Instead of instantiating the exact value of a variable into right hand side actions, we can instantiate

some function of that value. The function will be "computed" by the gating pattern that bind units

apply to the rule units' connections to working memory. For example, consider the increment and

decrement functions. We will use >x and <x in right hand side actions to denote values one greater

and one less than the value to which the variable is bound, e.g., if the variable is bound to F, then <x

appearing in a right hand side action would be instantiated as E and >x as G. Modular arithmetic

should be used so that every symbol has a successor and predecessor: the successor of Y is A, and 5

the predecessor if A is Y.
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Figure 16 shows how the increment function could be used to sequentially step through a series of

working memory elements by bumping a counter. The left hand side pattern (= x R R ) refers to the

counter value, which is maintained as a triple in working memory and incremented by a right hand

side action. On successive firings, rule Seq-1 will step through the triples (A R R), (B R R),

(C R R), etc., and leave behind another trail of triples (A B A), (B C B), and so on.

Rule:

Seq-i: (=x R R) (=x R R) -- > -(=x R R) +(>x R R) +(=x >x =x)

Initial contents of working memory: lop

(A R R)

Figure 16: Use of the right hand side increment function to step a counter.
-f.

The implementation of the increment and decrement functions is straightforward. In actions that

don't compute functions of the bound variable, such as -(Ix R R), the rule units make

connections to all working memory units that could match the action, and each connection is gated

by bind units of the appropriate type. For example, a connection from a rule unit to an (A R R) unit
would be gated by a set of bind units that vote for A, while a connection to a (B R R) unit would be

gated by bind units that vote for B. To compute a function on the right hand side, the connections that

implement the right hand side action are simply gated by bind units specified by the function. Thus, in

rule Seq-1, the increment function that appears in +(>x R R) can be implemented by using bind

units that vote for A to gate (B R R ) connections. bind units that vote for B to gate (C R R)

connections, and so on Any mapping from symbols to symbols can be computed in this way.

8. Experimental Results

8.1. Measured Performance

DCPS has run a six rule loop overnight through more than one thousand rule firings without error.

Working memory contained two triples at a time, and each rule firing involved one addition and one

deletion. In the current version of the model, a rule match takes about ninety seconds on a Symbolics

3600 running Common Lisp Part of this time is spent updating a graphic display as each unit "

changes state, so that the network's progress can be monitored during the match. -,

The capacity of the coarse coded working memory of DCPS depends in part on the number of units

%~~ % % J
%,
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used (2000 in our experiments), and also on the similarity of the items that are stored. With a 25 V

symbol alphabet there are 25 maximally dissimilar triples; an example is the set (A A A), (B B 8),

through (Y Y Y). This entire set can be stored in DCPS' working memory without losing the ability

to distinguish between present and absent triples. (As external observers measuring the memory's

capacity, we used 75% activation as the dividing line.) On the other hand, only 5 to 6 elements from a

maximally similar set, such as {(A A A) (A A B) ... (A A Y)) can be stored before local blurring begins

to interfere with the accuracy of recall. When randomly-generated triples were stored, the measured

capacity of the memory was 20 triples on average, varying from a low of 12 to a high of 29. ."-

The number of rules the system can represent appears to be limited only by synergistic effects and

by the number of possible partial matches during each search. The largest production system we

have run to date, which used a slightly modified version of DCPS as part of a parse tree manipulation

task, had 17 rules (Touretzky, 1986b).
o'.

The matching portion of an annealing typically involves 6 probes of each unit, where a probe

consists of computing the unit's energy gap, deciding whether or not it will change state, and

notifying its neighbors if its state does change. Failed matches are detected after 10 probes, when

the cleanup portion of the temperature schedule is begun.

8.2. Dilficult Match Cases

Early in the development of DCPS we adopted the simplifying assumption that match problems

would always have unique answers, so that only one rule and one variable binding could constitute a

valid match. This allowed us to avoid the issue of conflict resolution (Brownston et a/., 1985), which, ,-

although interesting, is not central to our enterprise. But even with this simplifying assumption some

match problems are more demanding than others, and situations can be contrived in which DCPS has

difficulty finding the correct solution. Two such situations are discussed below.

In the simplest match cases there are no partial matches to worry about; the triples in working

memory that do not match the winning rule do not match any of the other rules either. In more

complex cases several feasible-looking matches exist with relatively low energy states; the system is

forced to search among them to find the lowest one. This involves calling up different triples in the ,-

clause spaces for each possibility. As the number of partial matches increases DCPS becomes more

likely to settle into a local minimum representing a partially successful match rather than finding the

lowest energy state associated with the one correct match. Figure 17 shows a set of rules and

working memory elements that produce this behavior. In theory, annealing long enough and slowly

enough would solve the problem, since the correct match is always a deeper energy minimum than

any partial match.

Ir o r
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Rules:

Comb-l: (=x A A) (=x B B) -- >

Comb-2: (=x C C) (=x D D) -- >

Comb-3: (=x E E) (=x F F) -- >

Contents of working memory:

(J A A) (K B B)
(K C C) (J D D)
(M E E) (M F F)

V_

Figure 17: A match situation in which combinatorial complexity hinders the search for a
valid match.

In this match scenario there are six triples in working memory; the clause spaces must select from

among the 36 possible ways to form a pair of triples the one combination the produces a correct

match. What makes this problem difficult is the fact that four pairs of triples have fairly deep energy

minima representing almost-successful partial matches. See table 2. In these partial matches, either

both clauses on the left hand side of rule Comb-1 or Comb-2 are satisfied but the variable binding

constraint is not, or else only one of the left hand side clauses is satisfied but the variable binding

constraint is met because both clause spaces support the same bind clique (J or K.) The source of the

combinatorial confusion is the fact that all three rules and all three bind cliques are capable of getting

full support from the clause spaces, so it's difficult to choose among them; what differentiates partial

from complete matches is the fact that rule and bind space can't both get full support except when

the rule is Comb-3 and the variable =x is bound to M.

DCPS does not search a combinatorial space by sequentially enumerating the possibilities. The

partial representations of competing triples coexist simultaneously in the clause spaces, while rule

and bind winner-take-all spaces host similar competitions. The stochastic nature of the Boltzmann

machine causes some competitors in a space to fade out, and possibly fade back in again, until the

network as a whole settles deeply enough into an energy minimum that a clear winner emerges in

each space.

Figure 18 illustrates another contrived case where it is difficult for DCPS to conclude the match

correctly. (M J J) is present in working memory but none of the rules Syn-1 through Syn-4 can

match, due to their second clause. While all rules compete with each other as a result of being in a

%~ :
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Degree Triple in Triple in J

of Match Clause 1 Clause 2 Rule Supported Bindingo Supported

Partial (J A A) (K B B) Comb-I half J, half K

Partial (J A A) (J D D) half Comb.-i, half Comb-2J

Partial (K C C) (J D 0) Comb-2 half J, half K

Partial (K C C) (K B 8) half Comb-i, half Comb-2 K%

Complete (M E E) (M F F) Comb-3 M :64

Table 2: The four partial matches generated by the rules in figure 17 have fairly deep
energy minima, but there is a global minimum, representing the one complete
match, in which all constraints are satisfied.

winner-take-all network, the Syn rules also help each other by supporting (M J 3) as the first clause.
This unwanted synergy, which occurs whenever failing rules have related left hand sides, interferes -

with the search for the correct match. In order to find this match, the lone Anti rule must override the
four Syn rules and get the pattern for (M R R) into C1 space. The more Syn rules there are to
support (M J 3J), the harder this will be.

Rules: 
5

Syn-1: (=x J J) (zx A A)-- - hl

Syn-2: (=x 3 3) (=x B 8)-- ---

Syn-3: (-x J 3) (-x C C)Q > -.-. '

Syn-4: (=x 3 J) (-x D D) - ---

Anti: (-x Rt R) (xx S S)-- ---

Contents of working memory:

(M 3 J)
(M RR) .-

(M S S)

Figu re 18: A match situation in which synergistic action between four rules that generate
partial matches can prevent the system from finding the correct match.
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9. Discussion

9.1. Alternative implementations of working memory

There are two broad approaches to implementing a working memory in a connectionist network. /'

The obvious method, which we use here, is to set aside a separate group of units whose activity -"

encodes the current contents of working memory. A less obvious alternative is to use temporary

modifications of connection strengths to make it easier to recreate patterns of activity that have

recently occurred. The advantage of this second method is that it does not require any extra units to

act as a memory, and the memory is automatically content-addressable - recent patterns can be .-,

reconstructed from any sufficiently large subpattern. A particularly simple version of the second -.,

method is to implement working memory by temporarily lowering thresholds. In DCPS1, for example,

the only effect of the units in the working memory space is to provide additional input to units in the

clausel and clause2 spaces, so we could remove the working memory units and exactly mimic their

effects by temporary reductions of the thresholds of units in the clause spaces. This would also get

rid of all the one-to-one connections between the working memory and clause spaces.

One disadvantage of using thresholds instead of units is that each time a new item is inserted (or

deleted) it is necessary to lower (or raise) thresholds in both clause spaces, because there is no way

of knowing in advance whether the item will subsequently match the first or the second clause of a

rule.

Some important properties of the working memory are broadly independent of whether it is

implemented as activity levels, temporary threshold changes, or temporary weight changes. Because

the working memory for each item is distributed over many units, thresholds, or weights, there will be

interference if more than a few items are stored at once, and the interference will be greater as the

items become more similar. This is a necessary consequence of using distributed.representations to

allow many more possible items than there are storage sites. We interpret the well-known limitations

of human short-term memory as an indication that it too may involve the use of distributed

representations.

9.2. Multiple interacting distributed representations

In the introduction we alluded to a problem that arises when there are interactions between several

groups of units that each use distributed representations. Each unit takes part in the representation

of many different items and its causal effects on units in other spaces must reflect this fact. This

means that a unit in one space will generally provide excitatory input to a great many units in another

space, and so there is a danger that the activation within each space will become more and more

diffuse as time progresses. In DCPS, the tendency for activation to become more diffuse is

%e.5%S
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counteracted by using lateral inhibition within the spaces. This suppresses units that are only

supported by a small fraction of the units in other spaces and concentrates the activation on units

which receive multiple excitatory input.

Winner take all networks, bind spaces, clause spaces (or pullout networks), and coarse coded

symbol representations are generally useful bits of machinery that have been prc fitably incorporated

into other connectionist models. Touretzky (1986a) describes a system for manipulating recursive

data structures, called BoltzCONS, that was assembled by rearranging the components of DCPS.

BoltzCONS has only one pullout network instead of two, but it has three independent bind spaces.

The representation of rules in DCPS is only "semi-distributed." Although rules are represented by

collections of units, each unit is associated with a single rule, rather than being coarse coded.

Sharing units between similar rules is counterproductive in this architecture, because rules with

similar left hand sides may have totally dissimilar or even directly opposed right hand sides. Consider

the two rules Sim-1 and Sim-2 below: one tries to add the triple (H H H) and ones tries to delete it.
The rule units common to Sim-1 and Sim-2, which should be in the majority because the rules are so

similar, would have both excitatory and inhibitory connections to (H H H) working memory units.

Thus, the majority of the rule units would have no action at all. More sophisticated versions of DCPS,

which we are presently considering, may be able to exploit similarity among rules by segregating left

hand side and right hand side operations into different collections of units.

Sim-1: (=x A B) (=x C D) -- > +(H H H)

Sim-2 (=x B B) (=c C D) -- > -(H H H)

9.3. Similarity and generalization

One automatic consequence of using distributed representations is that similar items tend to have "

similar effects. This is a helpful effect if the particular distributed patterns that are used impose a
similarity metric that reflects the important distinctions in the domain. If, for example, "cheese" and

"chalk" have rather different representations but "cheese" and "cheddar" have rather similar

representations, a connectionist network will tend to make sensible generalizations (Hinton et al.,
1986). There have been many demonstrations of this effect when the experimenter chooses the

distributed representations (Hinton, 1981c; Rumelhart & McClelland, 1986). More recently, Hinton

(1986) has described a network that can construct the appropriate distributed representations for

itself, so the generalizations cannot be said to have been determined by the experimenter.

DCPS does not currently make any use of similarity between triples or bu:ween rules, and it

therefore fails to make good use of the properties that a connectionist implementation could provide.
,, We view DCPS as only the first step in the development of connectionist symbol manipulation

- "-
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architectures. Future advances should lead to models which make better use of the powerful P

constraint satisfaction and generalization abilities of connectionist networks. Such models would be

more than mere implementations of conventional symbol processing ideas because the connectionist

substrate would provide important computational properties that are not available in standard

implementations.

9.4. Seriality and variable binding

DCPS is implemented in a massively parallel network and yet it is unable to bind the variables in

more than one rule at a time. It can perform a parallel search over rulesthat contain variables to
b.]

discover which rule fits the contents of working memory best and during this search it considers many

different rules and many different variable bindings in parallel, but it is unable to represent particular

conjunctions of rules and variable bindings. Its only method of representing such a conjunction is by .

settling on a single rule and a single binding of each variable. This means that it is using simultaneity

to represent the binding, and simultaneity cannot be used for representing several different bindings

at once. ,,

Many different variable bindings could be explicitly represented at the same time if we dedicated a

separate unit to each possible conjun'ction of a rule and a variable binding, but this is equivalent to

eliminating variables altogether by having many different, variable-free versions of each rule. Newell

(1980) has advanced the idea that variable binding may be one of the things that forces people to be

sequential processors, and DCPS corroborates this view. By separating the rule space from the bind "-

space we achieve great economies in the the number of units required, but the cost is that the only

way to explicitly represent which binding goes with which rule is to settle on one bound rule at a time.
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Appendix A. Model Parameters
DCPS is one of the largest connectionist models built to date. Tables A-1 through A-3 give the

number of units in each space and the types, numbers, and weights of their connections. In these

tables, thresholds are expressed as connections with weight -0 to a "true unit" whose state is always

1.

Clause Spaces: 2000 units each

Source of Number of Weight per
Connections Connections Connection

'C

Working memory unit 1 + 900
Other clause units 1999 -2 (mutual inhibition) ,
Rule units avg. 7 per rule +5
Bind units avg. 40 +10
True unit 1 -939 (threshold)

Table A-i: Parameters of clause units.

Rule Space: 40 units per rule

Source of Number of Weight per
Connections Connections Connection

C1 clause units 40 +5"
C2 clause units 40 + 5

Sibling rule units 39 +2
Rival rule units 40 per rival rule -2
WM units (gated) 40 per RHS action n/a
True unit 1 -69 (threshold)

Table A-2: Parameters of rule units.
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Bind Space: 333 coarse coded units. 3 symbols per unit; 40 units per symbol.

Source of Number of Weight per
Connections Connections Connection

C1iclause units 240 +10
C2 clause units 240 + 10
Sibling bind units avg. 107 + 2
Rival bind units avg. 225 -2
True unit 1 -119 (threshold)

Table A-3: Parameters of bind units.

% %d

% % % -
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Appendix B. Generating Receptive Fields for Working Memory
Units.

In our simulation, each triple in working memory is represented by activity in about 28 units. We

initially chose the receptive fields of working memory units at random in the obvious way: Six different

random letters are chosen for the first position, six for the second, and six for the third. Unfortunately

this introduces large sampling errors. Triples represented by as few as 20 or as many as 36 active

units are quite common. This can make it hard to distinguish between triples that are present but

have few units to represent them and triples that are absent but have accidental activation in some of -

their many units. If the expected number of active units per triple was much larger than 28, the law of

large numbers would eliminate this problem, but in our simulation we used a heuristic method for

making the number of units per triple be more uniform.

We started with a set of receptive fields that were chosen so that every letter occurred equally often

in each of the three positions. We then considered all possible triples, and recorded how many units

encoded each triple. We defined a cost function which was the sum (over all possible triples) of the

square of the difference between 63/25 3 x2000 = 27.65 and the number of units encoding the triple. 4-* .

This measure is minimized when the number of units per triple is as uniform as possible. We

performed gradient descent in this cost function by selecting moves which reduced the cost function

but preserved the number of times a letter occurred in each position. A candidate move consisted of

taking the receptive fields of two units and swapping two letters in corresponding positions. If for

example, two letters from the second position are swapped, the two receptive fields

((,A B C 0 E F) (G H I J K L) (M N 0 P Q R))
((T U V W X Y) (P Q R S T U) (A C E G I K))

might become

((A B C D E F) (G H R J K L) (M N 0 P Q R))
((T U V W X Y) (P Q I S T U) (A C E G I K))

Candidate moves were selected at random, and were accepted whenever they reduced the cost

function or left it unaltered. This was continued until no more improvements were encountered. We

considered using simulated annealing to improve the solution, but simple gradient descent was

already rather slow and it gave an adequate solution. The standard deviation was reduced from 4.9 to

1.5.
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